・目的のヒアリング&抽出データの設計
・データ抽出/加工/集計
・データ分析/結果考察/改善方針提案
まずはデータ分析領域を見越した、データ処理を担当して頂きます。
将来的には分析の要件定義からクライアントへの企画提案までお任せします。
<開発環境/使用ツール>
AWS/GCP/Azure/Tableau/SAS/SPSS/Oracle Database/SQL ServerMySQL/PostgreSQL/Google AnalyticsSQL/Python/Rなど
~~~案件事例~~~
①ソーシャルゲームアプリの売上増加に向けたデータ分析支援
アプリのログデータを解析し、アプリ運営の改善、売り上げUPに繋げる
使用ツール:SQL, Google BigQueryなど
②機械学習を用いたモデルの作成
クライアントが保持しているデータからモデルを作成し分類化や数値予測を行う
使用ツール:Python
③ファクトリーブランド立ち上げに向けたマーケティングリサーチ
地域独自のブランドを立ち上げることで、減少した売り上げの回復と安定化
使用データ:業者からのヒアリングデータ、生活者へのインタビューデータ
≪ スキルアップの流れ ≫
Step1 データ分析環境の理解
まずはデータ分析領域の業務を行うにあたって、データの理解から始めます。
◇ 使用環境・言語・ツール
SQLServer / MySQL / PostgreSQL / Oracle Databaseなど
Step2 コーディング
データ分析を行う上で、必要不可欠な数値を算出します。
◇ 使用環境・言語・ツール
SQL / Python / SAS / Rなど
Step3 データの可視化・分析
データについて正しく理解し扱えるようになったら、いよいよ分析フェーズに移行します。
◇ 使用環境・言語・ツール
Google Analytics / Tableau / PowerBI / その他分析ツールなど
Step4 レポーティング・報告提案
データ分析結果を基に、レポーティングと考察を行います。
意思決定に必要なデータを揃え、顧客が必要とするデータをわかりやすくまとめます。
◇ 使用環境・言語・ツール
ダッシュボード(BIツール内) / PPT / Word
正社員
未経験からでも月給最大35万円!上場企業の中古車販売店のディーラー
株式会社IDOM